Tanaka's formula for multiple intersections of planar Brownian motion

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple intersection exponents for planar Brownian motion

Let p ≥ 2, n1 ≤ · · · ≤ np be positive integers and B 1 , . . . , B n1 ; . . . ;B p 1 , . . . , B np be independent planar Brownian motions started uniformly on the boundary of the unit circle. We define a p-fold intersection exponent ςp(n1, . . . , np), as the exponential rate of decay of the probability that the packets ⋃ni j=1 B i j [0, t ], i = 1, . . . , p, have no joint intersection. The ...

متن کامل

Intersection Exponents for Planar Brownian Motion

We derive properties concerning all intersection exponents for planar Brownian motion and we deene generalized exponents that loosely speaking correspond to non-integer numbers of Brownian paths. Some of these properties lead to general conjectures concerning the exact value of these exponents.

متن کامل

A Rigorous Path-integral Formula for Quantum Spin Dynamics via Planar Brownian Motion

Adapting ideas of Daubechies and Klauder we derive a continuum path-integral formula for the time evolution generated by a spin Hamiltonian. For this purpose we identify the finite-dimensional spin Hilbert space with the ground-state eigenspace of a suitable Schödinger operator on L(R), the Hilbert space of square-integrable functions on the Euclidean plane R, and employ the Feynman-Kac-Itô for...

متن کامل

Brownian motion, reflection groups and Tanaka formula

In the setting of finite reflection groups, we prove that the projection of a Brownian motion onto a closed Weyl chamber is another Brownian motion normally reflected on the walls of the chamber. Our proof is probabilistic and the decomposition we obtain may be seen as a multidimensional extension of Tanaka’s formula for linear Brownian motion. The paper is closed with a description of the boun...

متن کامل

Logarithmic Potentials and Planar Brownian Motion

In Section 5, we saw that for a Brownian motion process in n _ 3 dimensions, P (limtxIX, = o0) = 1 for all x. In sharp contrast to this situation, a planar Brownian motion is certain to hit any nonpolar set. THEOREM 8.1. Let B be a Borel set. Then PX(VB < cX) is either identically 1 or identically 0. PROOF. A simple computation shows that for any x e R2, 1' p(s, x) ds T co as t T oc. Thus, for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 1986

ISSN: 0304-4149

DOI: 10.1016/0304-4149(86)90020-7